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ABSTRACT 
 
This paper addresses the need to analyze and validate the archi-
tectural requirements of complex systems-of-systems early in 
the development process. We present an iterative rapid proto-
typing process for studying the temporal behavior of the sys-
tem-of-systems architecture via object-oriented architectural 
models expressed in UML-RT (UML for Real-Time extension) 
augmented with formal specification of timing requirements in 
terms of a time-series temporal logic. The UML-RT models are 
translated into coarse-grained simulation models that are exer-
cised using the OMNeT++ simulation engine. We instrument 
the OMNeT++ simulation code with probes that send informa-
tion to DBRover, a time-series temporal logic tool that simu-
lates, builds, executes and monitors temporal assertions about a 
target application, for temporal property verification during 
prototype execution. We illustrate the proposed approach with a 
case study of the sensor-netting capability of a missile defense 
system. 
 
Keywords: UML-RT, Real-time System, Temporal Logic, 
Run-time Execution Monitoring, Execution-based Model 
Checking, Missile Defense 
 
 

1. INTRODUCTION 
 
The analysis and architectural design of complex systems-of-
systems, such as the Ballistic Missile Defense System, pose 
many challenges [2,3]. First, the system is complex and yet has 
to be highly dependable. In addition, these systems are often 
distributed, heterogeneous, network-centric, and software inten-
sive. Any good architecture for such systems must be easily 
evolvable and reconfigurable since it has to accommodate leg-
acy systems as well as systems under development. These sys-
tems have to operate in unpredictable environments and little is 
known about how to model and reasoning about such complex 
systems. Feasible requirements for these systems are difficult to 
formulate, understand, and meet without extensive prototyping. 
Modeling and simulation holds the key to the rapid construction 
and evaluation of prototypes early in the development process. 
Moreover, we need a process that can be readily adaptable by 
the defense industry.  
 
There is a growing interest in using object-oriented analysis and 
design techniques in conjunction with the Unified Modeling 
Language (UML) [13] to develop complex systems-of-systems. 
In [11], we presented an iterative process (Figure 1) for study-

ing the temporal behavior of system-of-systems architecture via 
object-oriented architectural models expressed in UML-RT 
(UML for Real-Time extension) [15].   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The process begins with use case analysis to identify user 
needs. Based on the use cases, we develop an object-oriented 
distributed architecture of the system expressed in UML-RT. 
We refine the internal structures of the component systems 
using the Hierarchy plus Input, Process, Output (HIPO) tech-
nique [7] until components are readily mapped to modules of 
the target simulation written in OMNeT++ [17]. The UML-RT 
models are then translated into coarse-grained simulation mod-
els that are exercised using the OMNeT++ simulation engine. 
We use the simulation to study the feasibility and correctness of 
the timing requirements and apply the lessons learned to modify 
the system architecture and timing constraints accordingly.  
 
The real-time nature of the missile defense requires the support 
of real-time systems whose correct behavior depends not only 
on the logical result of the computation but also on the time at 
which the result is produced. Traditionally, these temporal re-
quirements are expressed as hard and soft timing constraints. It 
is imperative for real-time systems to meet all deadlines in hard 
timing constraints but acceptable to miss the deadlines of the 
soft timing constraints occasionally [8]. There are currently two 
complementary approaches to evaluating the correctness of 
real-time systems: static analysis of its behavior according to a 
set of metrics (e.g., schedulability analysis to establish the fea-
sibility of the timing constraints) and run-time monitoring of 
real-time systems to study its behavior according to a set of 
metrics  (e.g., release jitter, frequency and degree of tardiness).  
While the static analytic approach plays an important role in 
helping system designers set time budgets and allocate re-
sources in their designs, they are only effective if correct timing 
constraints can be determined during the requirements analysis 

Figure 1. The Iterative Prototyping Process 
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phase.  Moreover, traditional analytical techniques are not ef-
fective in evaluating time-series temporal behaviors  (e.g., the 
average duration between consecutive missing deadlines within 
any 10-minute interval must be greater than 5 seconds). This 
kind of requirement can only be evaluated through execution of 
the real-time systems or their prototypes.  
 
This paper describes the use of time-series temporal logic to 
capture the timing properties of a system-of-systems architec-
ture. The temporal assertions are input to DBRover, a time-
series temporal logic tool that builds and executes temporal 
rules for the target application [5], to generate executable tim-
ing specifications. We then instrumented the OMNeT++ simu-
lation code with probes (code snippets) to send information to 
DBRover for temporal property verification during prototype 
execution. The rest of the paper is organized as follows. Section 
2 provides an introduction to UML-RT. Section 3 gives an 
overview of temporal logic and the DBRover system. Section 4 
presents a case study of a missile defense system to demonstrate 
the use of time-series temporal logic for the run-time verifica-
tion of timing properties. Section 5 presents a discussion of the 
approach.  
 
 

2. UML-RT 
 
UML-RT is an extension of UML and is based on the concepts 
underlying the ROOM language [16]—an architectural defini-
tion language developed specifically for complex real-time 
software systems. UML-RT provides three principal constructs 
(capsules, ports, and connectors) for modeling the structures of 
a real-time system. Capsules are specialized UML active ob-
jects for modeling self-contained components of a system with 
the following two restrictions: (1) capsule operations can only 
be called within the capsule and (2) capsules can only commu-
nicate with other capsules through special mechanisms called 
ports. Ports are objects within a capsule that act as interfaces on 
the boundary of the capsule. A capsule may have one or more 
ports through which it is interconnected with other capsules via 
connectors. Connectors represent communication channels 
through which capsules communicate via the sending and re-
ceiving of messages. Each port is associated with a protocol 
that captures the semantics of the interactions between the port 
and its counterpart on the opposite end of the connector. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 shows a simple UML-RT model consisting of a set of 
sensor capsules, a set of sensor fusion processor capsules and a 
sensor net capsule. Each sensor capsule has three ports. It uses 
one of the ports to communicate with its associated sensor fu-
sion processor capsule. Each sensor fusion processor capsule 
has multiple ports for communication with its associated sen-
sors (as indicated by the multi-object icon) and uses a single 
port to communicate with the sensor net capsule. The “white-

filled” icons on the sensor fusion processor capsule indicate that 
the sensor fusion processor capsule plays the “slave” role of a 
binary protocol when communicating with its associated sensor 
capsules. A capsule may contain collaborating sub-capsules, as 
shown in Figure 3, and may have at most one state machine that 
specifies the dynamic behavior of the capsule. 
 
 
 
 
 
 
 
 
 
 
 
 

3. METRIC TEMPORAL LOGIC WITH  
TIME SERIES CONSTRAINTS 

 
Temporal Logic is a special branch of modal logic for investi-
gating the notion of time and order. In [14], Pnueli suggested 
using Linear-Time Propositional Temporal Logic (LTL) for 
reasoning about concurrent programs. Since then, several re-
searchers have used LTL to state and prove correctness of con-
current programs, protocols, and hardware (e.g., [6,9]). LTL is 
an extension of propositional logic where, in addition to the 
propositional logic operators there are four future-time opera-
tors and four dual past-time operators: always in the future (al-
ways in the past), eventually, or sometime in the future (some-
time in the past), Until (Since), and next cycle (previous cycle).  
 
Metric Temporal Logic (MTL) was suggested by Chang, 
Pnueli, and Manna as a vehicle for the verification of real-time 
systems [4]. MTL extends LTL by supporting the specification 
of relative- and real-time constraints. All four LTL future-time 
operators (Always, Eventually, Until, Next) can be characterized 
by relative- and real-time constraints specifying the duration of 
the temporal operator. Hence, for example, the MTL assertion 
“Always < 20 commandResult > 0”, states that commandResult > 
0 must hold every cycle until 20 cycles in the future. 
 
MTL with time-series constraints (MTLS) enables the specifi-
cation of requirements in which propositions include temporal 
instances of variables. Consider the following automotive cruise 
control code with a stability assertion (using embedded Tempo-
ralRover syntax [5]) requiring speed to be 95% stable while 
cruise is set and not changed: 
 

void cruise(boolean cruiseSet, boolean cruiseChange, 
                  boolean cruiseOff, boolean cruiseIncr, int speed) 
{    
     /* Cruise Controller functionality */ 
      … 
     /* TRBegin 
               TRAssert {  
                    Always ( {cruiseSet} => 
                        {speed*0.95 < speed’ &&  
                                                 speed’ < speed*1.05}  
                        Until $speed$ {cruiseChange || cruiseOff} ) 
                } => {…} // user actions 
          TREnd */ 
} 

Figure 2. A UML-RT model 
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In the example speed is a temporal data variable, which is asso-
ciated with the Until temporal operator. This association implies 
that every time the Until operator begins its evaluation, possibly 
in multiple instances (due to non-determinism), the speed value 
is sampled and preserved in the speed variable of this instance 
of the Until; this value is referred to as the pivot value for this 
Until node instance. Future speed values used by this particular 
evaluation of the Until statement are referred to using the prime 
notation, that is, as speed’; these future instances of the speed 
value are referred to as primed values. Hence, if the speed value 
was 100Km/h when cruiseSet is true, then the pivot value for 
speed is 100, while every subsequent speed is referred to as 
speed’ and must be within 5% of the pivot speed value. 
 
Note how speed is declared using the $speed$ notation to be a 
temporal data variable associated with the Until operator. This 
declaration indicates to TemporalRover that it should be sam-
pling a pivot value from the environment in the first cycle of the 
Until operators lifecycle, and to refer to all subsequent samples 
of speed as speed’. 
 
Similarly, the following example consists of a monotonicity 
requirement for the cruise control system, where speed is mono-
tonically increasing while the Cruise Increase (cruiseIncr) com-
mand is active: 
 

TRAssert {  
     Always ( {cruiseIncr} => 
           {speed <= speed' && (speed=speed') >= 0}  
           Until $speed$ {!cruiseIncr} ) 
 } =>  {…} // user actions 
 

In this example the temporal data variable speed is sampled 
upon every cruiseIncr event, and is compared to the current 
value (speed’) every cycle. The latest speed value is then saved 
in the pivot for next cycle’s comparison. 
 
DBRover is an MTLS monitoring tool based on the Temporal-
Rover code generator of [5]. It consists of a GUI for editing 
temporal assertions, an MTLS simulator, and an MTLS execu-
tion engine. DBRover builds and executes temporal rules for a 
target program or application. In run-time, DBRover listens for 
messages from the target application and evaluates correspond-
ing temporal assertions. Hence, in the cruise-control example 
above, DBRover will listen for Boolean messages pertaining to 
the run-time values of the cruiseSet, cruiseChange, and 
cruiseOff Boolean propositions, as well as the run-time value of 
the speed variable. DBRover then evaluates the corresponding 
MTLS assertion for that cycle. Monitoring is performed on-line, 
namely, DBRover operates in tandem with the target program, 
and re-evaluates assertions every cycle. DBRover uses an un-
derlying algorithm that does not store a history trace of the data 
it receives; it can therefore monitor very long, and potentially 
never ending, executions of target applications.  
 
 

4. MISSILE DEFENSE SYSTEM – A CASE STUDY 
 
In this section, we illustrate the formal specification and run-
time verification of timing specifications with a hypothetical 
ballistic missile defense system (BMDS). The BMDS is an 
integrated system-of-systems which provides a layered defense 
that employs complementary sensors and weapons to engage 
threat targets by land, sea, air, or space in the boost, midcourse, 

and terminal phases of flight, and incrementally deploying that 
capability.  In parallel, sensor suites, command and control, 
battle management and communication (C2BMC) will be de-
veloped to form the backbone of the BMDS.  
 
4.1 Use Case Analysis 
 
To understand the requirements and constraints of the proposed 
system, we developed six UML use cases to identify the exter-
nal agents and systems that are involved in a typical missile-
defense scenario and the necessary interactions between these 
entities: 
1. Detect Potential Threat Ballistic Missile - The goal of this 

use case is to detect possible threat ballistic missiles, and 
push the track data onto the sensor net. 

2. Generate and Transmit a Local Track - This is a sub-use 
case of 1. The goal of this use case is to have a sensor gen-
erate a local track based on valid detection parameters of the 
sensor. 

3. Cooperatively Track and Classify Threat Ballistic Missiles - 
The goal of this use case is to identify and type-classify the 
threat ballistic missiles, develop fire-quality tracks for en-
gagement solutions, and forward the target track list to 
weapons net. 

4. Cooperative Weapons Assignment - The goal of this use 
case is to assign targets to weapons via cooperative target 
bidding. 

5. Engage Targets - The goal of this use case is to engage 
threat ballistic missile. 

6. Assess Kill - The goal of this use case is to determine the 
kill status of the threat ballistic missile. 

Details of the use cases can be found in [10,12].  
 
4.2 The UML-RT Architecture Models 
 
The technological complexity, physically dispersed geography, 
and distributed nature of global ballistic missile defense neces-
sitate a distributed approach to ballistic missile defense battle 
management. Based on the use cases, we developed the top 
level of a distributed architecture shown in Figure 4, along with 
the corresponding UML-RT model shown in Figure 5. 
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Figure 4. A distributed C2BMC architecture 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The overarching C2BMC System will consist of a loosely cou-
pled set of regional C2BM systems; geographically separated 
networks interconnected much like the Internet.  The intent is to 
allow all participants to pull the information from specific re-
gions as desired, but also to ensure that time-critical informa-
tion can be pushed to those geographically collocated units that 
need it to effect destruction of a threat missile or to hand-off the 
information to non-geographically collocated units as a missile 
transits from one region to another. Note that the various sen-
sors and weapons may be connected to more than one regional 
C2BM system via proxy.  The advantage is that geographic 
location is a “don’t care” in that context.  The real-time nature 
of the battle requires that all sensor information be local to fight 
the battle.  As the missile continues in its flight, the real-time 
battle management, together with some of the sensors and 
weapons, will handover to another regional C2BM system. The 
use of the Broker pattern [1] will ease the handover of the assets 
from one region to another. By distributing the networks in this 
manner, information regarding any ballistic missile threat is 
available and accessible to all participants as desired, but will 
not overburden the network by having all the information pre-
sented to all units all the time; this will in theory provide in-
creased availability of data, more localized control, and im-
proved response times of the units to counter the threat.  
 
Each unit (battle manager, sensor, weapons, etc.) connecting to 
a regional C2BM system publishes a unit profile that contains 
knowledge of the geographic location of the unit and its net-
work address so that only data and information relevant to a 
particular unit (or region) is forwarded to that unit (or region). 
For example, fire-control data from another theater or region 
may not be useful and hence will stay local, while threat infor-
mation from other theaters or regions will probably serve as 
situational awareness and be made available to other regions. 
 
Each regional C2BM system consists of three major sub-
systems: a Sensor Net, a Weapons Net, and a C2BMC node, 
where the Sensor Net refers to a distributed system that pro-
vides the sharing of track data among Sensor Fusion Processors, 
Weapons Net, Weapon Platforms and the C2BMC node, the 
Weapons Net refers to a distributed system for cooperative tar-
get assignment, and the C2BMC node refers to automation sup-

port for the Command/Control, Battle Management and Com-
munication (C2BMC) functions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We refined the internal structures of the Sensor capsule, the 
Sensor Net capsule and the Sensor Fusion Processor capsule 
using the HIPO technique.  Figures 6 shows the internal struc-
ture of the Sensor Fusion Processor (SFP) capsule, which con-
sists of five sub-capsules (Sensor Interface, Track Fusing, Col-
laborative Fusion, Track List and Sensor Net Interface). The 
Sensor Interface capsule serves as the primary interface to all 
assigned sensors. It sends all tracks to the Track Fusing capsule 
if it is receiving data from more than one sensor; otherwise, it 
passes the data directly to the Collaborative Fusion capsule. The 
Track Fusing capsule takes multiple tracks per target from the 
Sensor Interface capsule, correlates or fuses them into one sin-
gle track per target in real time.  It also performs track discrimi-
nation as a backup to the sensor’s native discrimination capabil-
ity to prevent overload on the Sensor Net. The Collaborative 
Fusion capsule takes fused or raw local tracks (one per target) 
and fuses them with tracks received from other SFPs via the 
Sensor Net. The Track List capsule is responsible for compiling 
and providing the internal list of tracks for the SFP and prevent-
ing duplicates.  It provides this data to both the Track Fusing 
capsule and the Collaborative Fusion capsule, and provides this 
information to other SFPs upon request via the sensor net.  It 
also serves as a repository for commands received from the 
Sensor Net. The Sensor Net Interface capsule is responsible for 
pushing tracks from the Track List capsule to the Sensor Net 
and routing the incoming tracks from other SFPs via the Sensor 
Net to the Collaborative Fusion Capsule. (Readers can refer to 
[12] for the complete UML-RT models.) 
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We developed an OMNeT++ simulation shown in Figure 7 to 
identify potential bottlenecks at the Sensor Fusion Processor. It 
consists of twelve modules simulating the five sub-capsules of 
the Sensor Fusion Processor interfacing with two satellite Sen-
sor capsules, four ground radar Sensor capsules and the Sensor 
Net capsule. The internal structures of these capsules are 
mapped to the C++ code of the corresponding modules. Figure 
8 shows the graphical user interface for the simulation model 
shown in Figure 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3 Formal Requirements Specifications and Run-time Veri-
fication of Temporal Assertions 
 
Detection is critical to any ballistic missile defense system; the 
bottom line is that if one does not see the threat missile or know 
that it is coming then one cannot defend against it.  The pro-
posed BMDS relies on a network of sensors to detect, discrimi-
nate and track every ballistic missile event, and provide their 
parametric data on the contacts to the C2BMC to develop com-
bined tracks through fusion and correlation in order to develop 
a weapons solution to prosecute the target. We can express 
many of these sensor requirements formally in terms of time-
series temporal logic.  
 
For example, the requirements that all sensor-tracks must be 
correlated and fused can be expressed formally, using the Tem-
poralRover syntax, as follows: 
 

/* TRBegin 
         TRAssert For{sensorTrack1, sensorTrack2} { 
              Always ({flightObjectFor(sensorTrack1) == 
                            flightObjectFor(sensorTrack2)} => 
                    Eventually <nn1 ( 
                           {fusedTrackOf(sensorTrack1) != null} &&  
                            Eventually<nn2 ( 
                                   {fusedTrackOf(sensorTrack1).ID == 
                                     fusedTrackOf(sensorTrack2).ID)} && 

                                        monotonicity( 
                                                       fusedTrackOf(sensorTrack1))  
                          ) 

               ) 
          TREnd */ 
 
where  
• For{sensorTrack1, sensorTrack2} is like the logical “forall 

sensorTrack1, sensorTrack2”, the monitor will perform 
separate evaluations for every pair of sensor tracks; 

• fusedTrackOf(sensorTrack) provides a fused track for a 
sensor track, and fusedTrackOf(sensorTrack1) != null 
means that there exists a fused track for the sensorTrack; 

• flightObjectFor(sensorTrack) means the actual missile fly-
ing out there that is sensed by a sensor and then captured 
as sensorTrack; 

• Monotonicity( ) is a monotonically increasing requirement 
of some artifact (e.g., time with respect to a common refer-
ence); time series constraints, similar to the cruise control 
constraints of section 3 are used to specify this require-
ment; 

• The constants nn1 and nn2 are temporal conditions (e.g., 
durations, number of trails) or Boolean functions that can 
be evaluated at run-time. 

 
Note that although the monotonicity requirement seems trivial, 
it is less trivial when considering the fact that it is a requirement 
for monotonicity of a fused track, which derives its information 
from a plurality of sensor tracks. If, due to an error, the software 
confuses sensor tracks thereby updating fused-track information 
from the wrong sensor, then from time to time it may appear 
that the fused track is not advancing monotonically. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 shows the modified OMNeT++ model with the addi-
tional RuleCheckerCapsule module. The new module receives 
raw and fused track data from the SensorInterfaceCapsule and 
the TrackListCapsule respectively, and executes the code snip-
pets generated by DBRover to evaluate the Boolean conditions 
of the rule segments and sends the result to the DBRover Run-
time Monitor for real-time temporal rule verification (Figure 
10).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. The Graphical User Interface 

Figure 9. The Modified OMNeT++ Model 
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5. DISCUSSIONS AND CONCLUSION 
 
This paper shows that run-time monitoring and verification can 
be applied much earlier in the design process, in tandem with 
rapid prototyping to study the timing requirements of complex 
systems. The integration of the OMNeT++ simulation with the 
DBRover Run-time Monitor provides an effective way to check 
for the validity of the requirements and violation of the tempo-
ral assertions. Through the Use Case-Model-Simulation feed-
back cycle, we were able to identify potential bottlenecks in the 
architecture design, which led to redesign of some of its com-
ponents. Revised temporal constraints are input to DBRover to 
generate executable timing specifications and new code snip-
pets for re-instrumentation of the simulation code. Moreover, 
re-instrumentation of the simulation code is only needed if we 
modify the Boolean conditions of the rule segments. DBRover 
provides a special configuration, called the No Snippets Proto-
col, which allows the user to instrument the target code for a set 
of Boolean conditions in a one-time setup, after which changes 
to the rules on the DBRover side do not affect the client/target 
side. 
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